Fourth Annual Conference on Carbon Capture & Sequestration

Developing Potential Paths Forward Based on the Knowledge, Science and Experience to Date

Geologic Sequestration

Volumetric Equations for CO₂ Storage in Coalbeds, Oil and Gas Reservoirs, and Saline Formations

Scott M. Frailey

Midwest Geological Sequestration Consortium

A DOE Regional Partnership

May 2-5, 2005, Hilton Alexandria Mark Center, Alexandria Virginia

Volumetric Equations for CO₂ Storage in Coalbeds, Oil and Gas Reservoirs, and Saline Formations

A.C. Anderson, S.M. Frailey, H.E. Leetaru, Illinois State Geological Survey

A.S. Lawal

Center of Applied Petrophysical Studies

Texas Tech University

Outline

- General Volumetric Equation
- Displacement Efficiency
- Saline Water Bearing Formation
- Oil Reservoir
- Gas Reservoir
- Coalbed

General Volumetric Equation

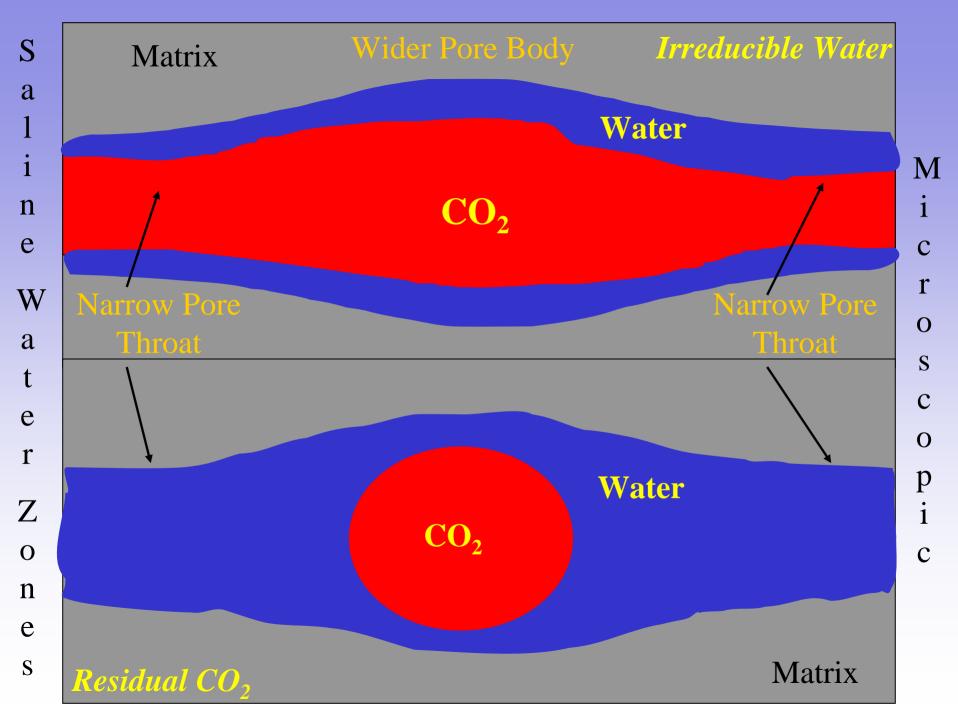
$$m = c A h \phi S/B$$

- m mass of the stored fluid
- A areal extend of the formation
- h vertical "net" thickness of the formation
- φ porosity, fraction of the bulk volume (Ah)
- S saturation, fraction of the pore volume $(Ah\phi)$
- B conversion from subsurface to surface volume
- c conversion from volume to mass

Units

- m mass, metric tonne
- A area, acres
- h thickness, feet
- φ porosity, fraction
- S saturation, fraction
- R scf/bbl (standard ft³)
- ρ std gas density, lbm/ft³
- ρ_c coal density, gm/cc

Displacement Efficiency

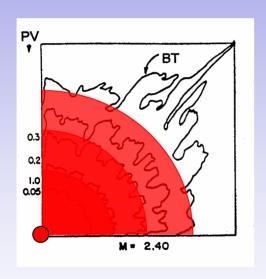

• Storage Factor (E) is the product of microscopic (E_D) and macroscopic (E_V) displacement efficiency

$$E = E_D E_V$$

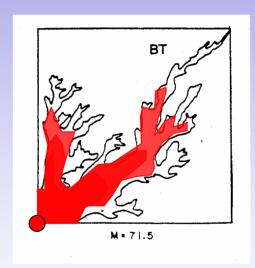
Displacement Efficiency, contd.

- MicroscopicDisplacement
 - Initial fluid (water, oil or gas)saturation
 - Residual fluid(water, oil or gas)saturation

- E_D
- Process dependent
- Differs for
 - In situ fluid(s)
 - Geologic formations



Displacement Efficiency, contd.


- MacroscopicDisplacement
 - Areal sweepefficiency (E_A)
 - Vertical sweepefficiency (E_I)
- $E_V = E_A E_I$

- E_V
- Process dependent
- Geologic heterogeneity
- Injector/producer
 - Pattern
 - Spacing

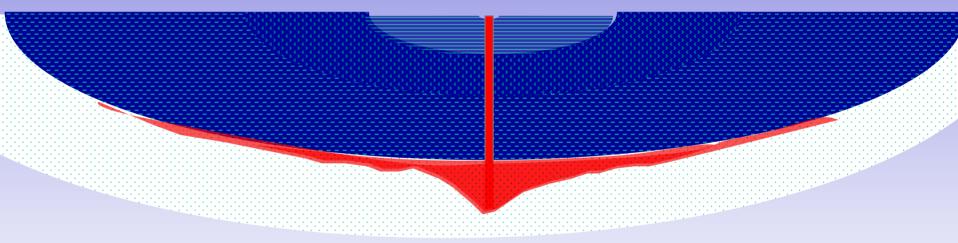
Areal Sweep Efficiency (Macroscopic)

CO₂ Injector

Scale: Acres

(Plan View)

Vertical Sweep Efficiency (Macroscopic).


	Permeability variations by layer	
		Layer 1
	CO ₂ (red)	Layer 2
2		Layer 3
		Layer 4
	Water (blue)	Layer 5

Scale: Feet

Saline Formation Storage Mechanisms: Geologic Structure

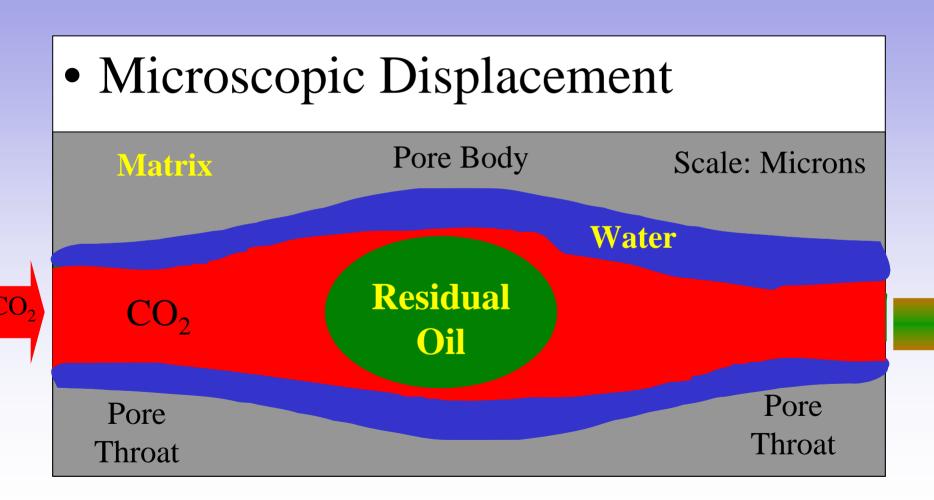
- CO₂ less dense than saline water in saline formation
- CO₂ "pool" forms at the top of subsurface geologic structure then dissolves in water with time.

Saline Formation Storage Mechanisms: No Geologic Structure

- No CO₂ "pool" forms at the top of subsurface geologic structure
- CO₂ continues to migrate until a geologic trap is reached, CO₂ is capillarily trapped or dissolves in water.

Saline: Storage Capacity Equations

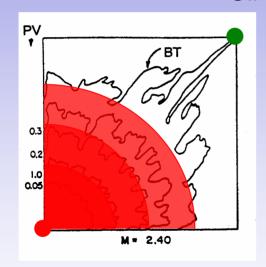
 $19.76 \, Ah\phi \rho_{CO2} (1-S_{wirr}) E_{Vm}$

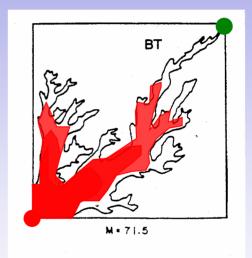

 $3.519 Ah\phi \rho_{CO2std} R_{sCO2/w} S_{wirr} E_{Vm}$

 $19.76 Ah\phi \rho_{CO2} S_{CO2irr} E_{Virr}$

 $3.519 Ah\phi \rho_{CO2std} R_{sCO2/w} (1 - S_{CO2irr}) E_{Vir}$

- Mobile, Free Phase (Structurally Trapped)
- CO₂ Saturated Brine,
 Swept to S_{wirr}
- Immobile, Free Phase (Capillary Bound)
- CO₂ Saturated Brine,
 Swept to 1-S_{co2irr}
- CO₂ Saturated Brine, Unswept


Oil Reservoirs


Oil Reservoirs: Heterogeneity-Anisotropy and/or Pattern Efficiency

Oil Producer

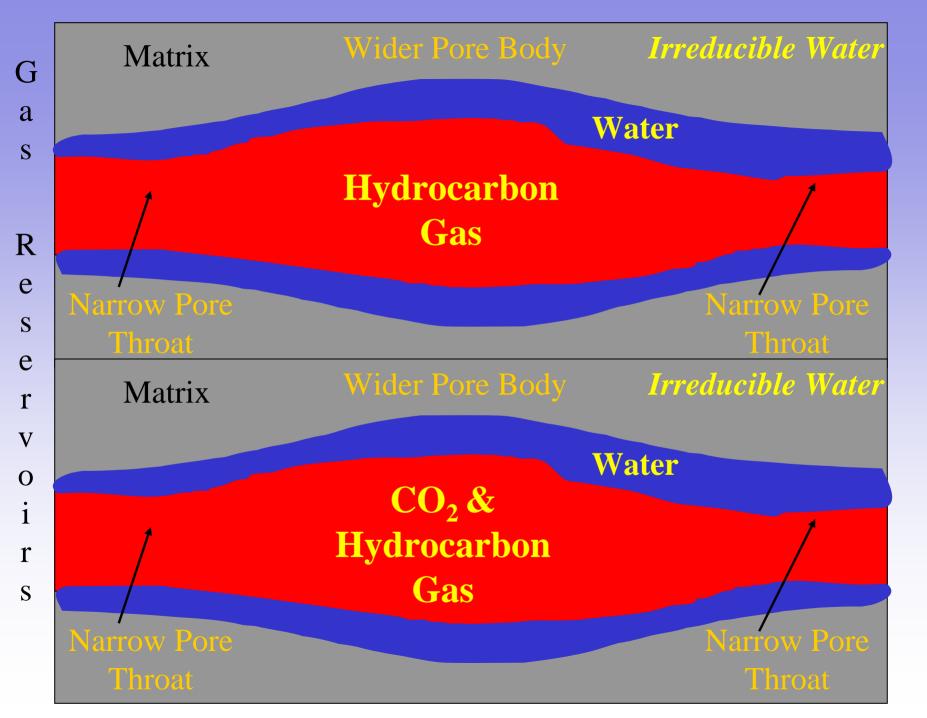
Oil Producer

CO₂ Injector

Scale: Acres

(Plan View)

Oil: Storage Capacity Equations


 $19.76 \rho_{CO2} hA\phi S_g$

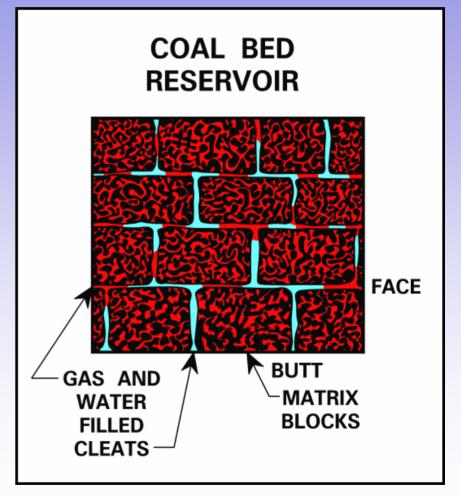
 $19.76 \rho_{CO2} hA\phi S_o E_V$

 $3.519 \, \rho_{\text{CO2std}} R_{\text{sCO2/oil}} h A \phi S_{\text{or}} E_{\text{V}}$

 $3.519 \rho_{CO2std} R_{sCO2/w} hA\phi S_w E_V$

- Mobile, Free Phase CO₂ (replaces hydrocarbon gas)
- Mobile, Free Phase CO₂ (replaces EOR)
- CO₂ Saturated Residual
 Oil
- CO₂ Saturated Water

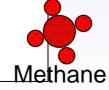
Gas: Storage Capacity Equations

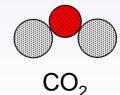

 $19.76 \rho_{CO2} hA\phi S_g$

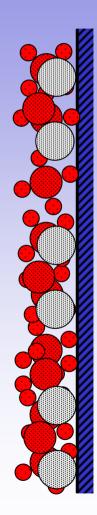
- $3.519 \rho_{CO2std} R_{sCO2/c} hA\phi S_{cr} E_V$
- $3.519 \rho_{CO2std} R_{sCO2/w} hA\phi S_w E_V$

- Free Phase CO₂ (mixed with hydrocarbon gas)
- CO₂ Saturated Residual Condensate (liquid)
- CO₂ Saturated Water

Coalbeds


- Cleats
 - Permeable conduit of gas to and from the coal
- Coal matrix
 - Primary Methane gas
 source (adsorbed) and
 CO₂ storage potential
- Water in cleats




Coalbeds: ECBM

- Microscopic Surface
 Phenomena of attractive forces between molecules
- Adsorption/desorption of Methane
- Preferential adsorption of CO₂ over Methane

CO2 Lower
Pressure via
water
production
from Cleats

Coal: Storage Capacity Equations

$$0.6168 \rho_{CO2std} C_{CO2i} \rho_c Ah(1-\phi) (1-f_a-f_m) E_v$$
 • CO₂ Adsorbed to Coal

 $19.76 \rho_{CO2} hA\phi (1-S_w)E_v$

 Mobile, Free Phase CO₂ (cleats)

 $3.519 \rho_{CO2std} R_{sCO2/w} hA\phi S_w E_v$

CO₂ Saturated Water (cleats)

Summary

- Presence of minerals with CO₂ adsorptive capability in saline water bearing formations and oil and gas reservoirs can be added similarly to the coalbed equation.
- Mineralization changes the type of storage but likely not the capacity during the active injection period of a sequestration site

Conclusions

- Storage mechanisms have been identified to model storage capacity in saline water bearing formations, oil and gas reservoirs, and coal beds.
- Volumetric equations have been developed to assess the CO₂ storage (mass) using a storage factor (efficiency)

Volumetric Equations for CO₂ Storage in Coalbeds, Oil and Gas Reservoirs, and Saline Formations

A.C. Anderson, S.M. Frailey, H.E. Leetaru, Illinois State Geological Survey

A.S. Lawal

Center of Applied Petrophysical Studies

Texas Tech University